Highlights from IMW 2021

Disclosures for Alessandra Larocca, MD

Research Support/P.I.	No relevant conflicts of interest to declare
Employee	No relevant conflicts of interest to declare
Consultant	No relevant conflicts of interest to declare
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	Janssen-Cilag, BMS, Amgen, Takeda, Oncopeptides, GSK, Sanofi
Scientific Advisory Board	Janssen-Cilag, BMS, Amgen, Takeda, Oncopeptides, GSK, Sanofi

Presentation includes discussion of the off-label use of a drug or drugs

All elderly are not equal

Heterogeneous population Variety of disease- and host-related factors

Fit patients ASCT Eligible

Fit patients No ASCT Eligible

Unfit/Intermediate

Frail

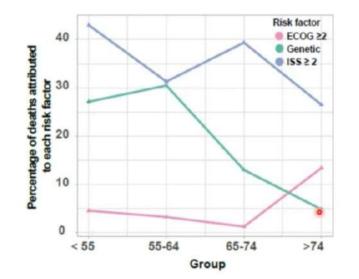
Based on Age Performance status (PS) Comorbidities (R-MCI score, HCT-CI) and organ function Active, independent, who exercise regularly Can perform limited activities but they don't need any help Help for household tasks Dependent on other people Partial help for their personal care

Prognostic Factors

Disease-related Factors

- R-ISS
- Chromosomal abnormalities
- Circulating Plasma Cells
- Plasma cell Leukemia
- Extramedullary disease
- Early relapse
- Response and MRD

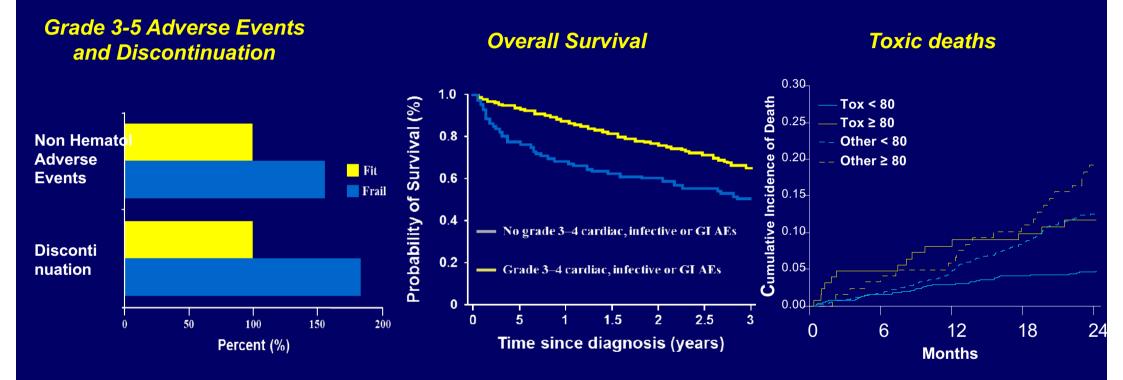
Patient-related Factors


- Frailty
- Age
- Renal Failure
- Co-morbidities
- Organ Function

Differences in the genetic make-up of MM by age

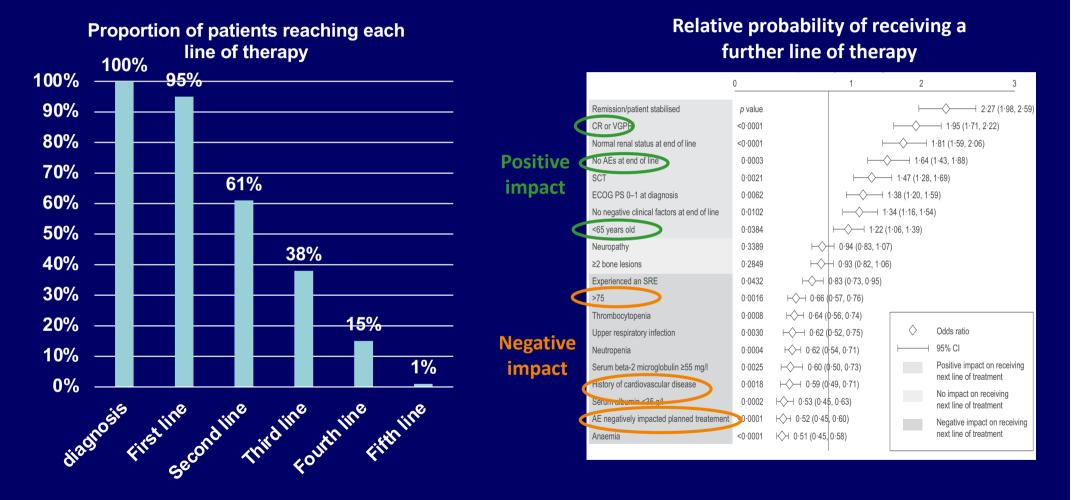
Contribution	of genetics
to outcome	

Event	<66 (%)	66-77 (%)	>75 (%)	p-value
del(13)	45	43.6 •	37	.004
t(4;14)	14.3	10.9	8.3	.001
del(17p)	6	5.9	6.1	NS

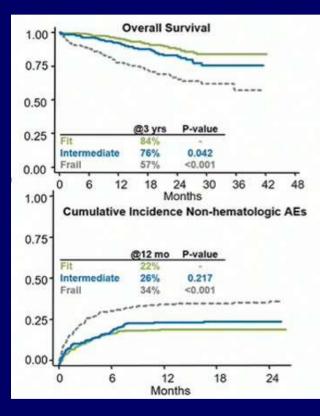

- The percentage of deaths attributed to genetics [del(1p), gain(1q), del(17p) and t(4;14)] goes down with age in favor of factors such as Performance Status and ISS
- Suggesting the <u>contribution of</u> <u>conventional genetic studies to outcome</u> <u>in elderly patients is less important in</u> favor of clinical features

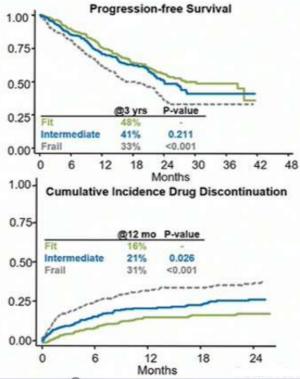
Boyle et al Leukemia in press

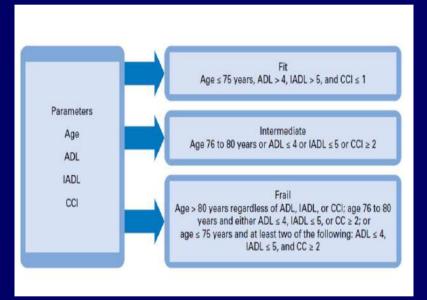
Adverse events and toxicity



Survival inferior due to toxic deaths Death due to toxicity 4-fold higher and death due to other causes 2-fold higher in >80 versus <80 years


*At least one adverse event; †Due to AEs, withdrawal of consent, patient compliance, unknown; progressive disease was excluded AE, adverse event; GI, gastrointestinal


Bringhen S, et al. Haematologica. 2013;98:980–987; Larocca A, et al. Blood 2013;122: abstract 687 Bringhen S et al. Crit Rev Oncol Hematol 2018:130;27-35

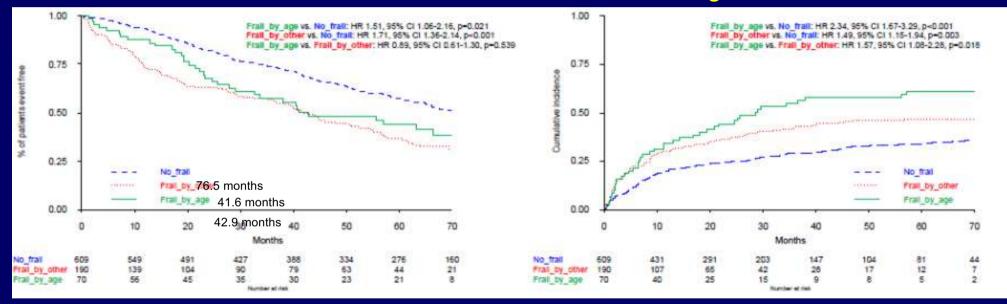

FIRST LINE TREATMENT IN ELDERLY MYELOMA PATIENTS PROBABILITY OF RECEIVING A FURTHER LINE OF THERAPY

IMWG Frailty Score

Palumbo A et al. Blood. 2015; 25:2068-2074

Assessment of frailty in Myeloma

	IMWG FRAILTY SCORE	
• Pa	e morbidities: - Charlson Comorbidity Index (CCI) tient-reported functional status - Katz Index of Independence in Activities of Daily Livin - Lawton Instrumental Activities of Daily Living (IADL) Categories: - score 0 Intermediate fit = score 1 Frail = score	
INCLUDING PROGNOSTIC FEATURES	INCLUDING OBJECTIVE PARAMETERS	SIMPLIFIED ASSESSMENTS
 R-MCI SCORE Age Comorbidities Renal function Pulmonary function Frailty evaluation Karnofsky performance status Cytogenetics Fit Intermediate fit Frail score ≤3 score 4-6 score >6 MRP score Age WHO performance status ISS stage Circulating CRP levels Low risk Medium risk High risk 	 MAYO CLINIC SCORE Age ECOG performance status Circulating NTproBNP levels Stage 1 Stage II Stage III Stage IV score 0 score 1 score 2 score 3 EVALUATION OF SARCOPENIA Muscle mass: CT 3rd lumbar vertebra area Muscle function: grip strength Physical performance: gait speed, etc SENESCENCE BIOMARKERS 	 > SIMPLIFIED FRAILTY SCORE Age Comorbidities CCI ECOG Performance Status Non-frail Frail score 0-1 score ≥2 > QUALITY-OF-LIFE QUESTIONNAIRES Patient-reported functional status

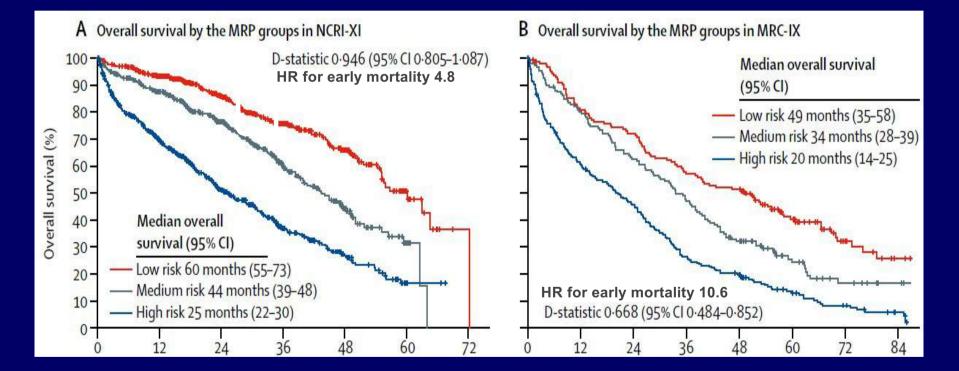

Bonello F et al. Cancers 2021, 12(11):3106

Role of chronological age > 80 ys in the IMWG Frailty Score

Frail by age only (>80 years, CCI≤1, ADL>4, IADL>5) vs. Frail_by_other

Overall Survival

Drug Discontinuation

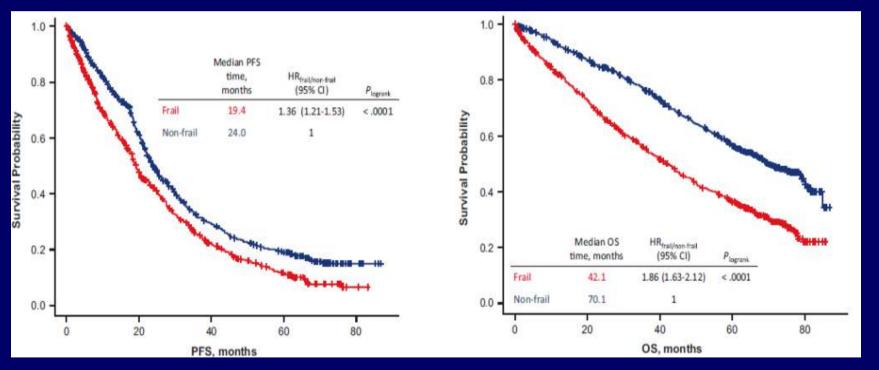


Frail by age >80 years = Frail for any other reason

D'Agostino M et al. EHA 2020.

Myeloma risk profile (MRP) is associated with outcome

Improvement by adding disease characteristics: WHO, age, ISS and CRP Only data available in all baseline assessments, no questionnaires/scores



MRP, UK Myeloma Research Alliance Risk Profile; WHO, WHO performance status; ISS, International Staging System; CRP, C-reactive protein; CI, confidence interval; HR, hazard ratio; p, p-value; HR, high risk.

Cook G, et al. Lancet Haematology 2019;6(3):e154-e166 Validated: Redder et al. BJH 2020

Simplified frailty scale predicts outcomes in NDMM patients treated in the FIRST (MM-020) trial

Simplified Frailty scale assessed with age, Charlson Comorbidity Index (CCI), and ECOG PS Retrospective analysis (n = 1618) : frail (49%) and non-frail (51%) patients

Facon T, et al. Leukemia 2020;34:224–233.

A single centre retrospective analysis on the ability to identify transplant-ineligible patients with MM who are not likely to benefit from new standard therapies

- Retrospectively simplified frailty scores, proposed by Facon et al (Leukemia 2000) based on age, ECOG PS and CCI
- 189 patients, 23% older than 80 years
- 70% were classified as frail and 30% non-frail
- CCI>1, PS ≥2 and albumin level ≤ 3g/dL whereas age was not found a factor affecting early mortality. Using albumin level ≤3 g/dL instead of age > 80, present in the Facon scale, the new score was able to stratify patients in frail (score 3-5, n= 55, 29.5%) and non-frail (score 0-2, n=155, 70.5%).
- **Conclusion:** Facon score could be improved using simple parameter as albumin level, to increase the ability to detect patients with the highest risk of early mortality

Offidani M et al Clinical Lymphoma Myeloma and Leukemia Volume 21, Supplement 2, October 2021, Page S124

COMPASS: a prospective study comparing clinical (CA) vs geriatric assessment (GA) in NDMM patients

- 200 NDMM patients \geq 70 years, 74% of patients were \geq 75 years
- CA performed by the treating physician; GA (G8) independently by a trained health care worker.
- 43% of patients were frail by CA; 69% had a geriatric risk profile by G8.
- Patients fit by CA but frail by G8 (fit-frail) were older (p=0,002), had reduced nutritional status (p<0,001), more recent weight loss (p<0,001), more polypharmacy (p<0,001), compared to fit by CA and G8 (fit-fit).
- CA fit but G8 frail patients were more independent on ADL, iADL, and had less cognitive impairment compared with frail patients by both CA and G8.
- Fit by CA but frail by G8 score were categorized into intermediate fit (31%) and frail (57%) by IMWG frailty score.
- After 3 months of treatment, the majority of patients remained in the same category (fit or frail) by CA and by G8 (respectively 82% and 80%), reinforcing that frailty status at diagnosis is not driven by myeloma-related symptoms.

CA underestimates the geriatric risk profile in 25% of NDMM elderly patients

Delforge M et al Clinical Lymphoma Myeloma and Leukemia Volume 21, Supplement 2, October 2021, Page S124

Experimental trial versus real-life population

Are patients in clinical trial really frail?

	SWOG S0777	ALCYONE	MAIA
Median age (years) ≥ 75 years >80 years	63 65 43% Not reported	71 30% Not reported	73 44% Not reported
ECOG PS 0-1 2 > 2	86% 14% 2-3 Excluded >3	75% 25% Excluded	83% 17% Excluded
Creatinine clearance 30-60 ml/min < 30 ml/min	5% creatinine > 2mg/dL excluded	41% excluded (< 40 ml/min)	41% excluded
Exclusion criteria	Previous malignancy NYHA III/IV Recent myocardial infarction	AST/ALT > 2.5 ULN Malignancy < 3 years Myocardial infarction < 1 year	AST/ALT > 2.5 ULN Malignancy < 5 years Myocardial infarction < 1 year

Durie B et al, Blood 2018; 132;1992; Durie et al; Blood Cancer J; 10:53; Mateos MV et al, Lancet 2020; 395(10218):132-141; Facon T et al, N Eng J Med 2019 380, 2105-15

Experimental trial versus real-life population

Clinical trial Efficacy

Real life Effectiveness

All patients

Limited number of patients Selected patients Restrictive inclusion criteria Limited comorbidities Intensive monitoring of patients Enrolled in clinical trial units Lack of frailty-tailored endpoint (i.e. quality of life)

Not selected patients Logistics (lack of care-giver, distance from site) Several/Some comorbidities Not always appropriate compliance Cummunity-based setting

Management of frail and intermediate (unfit) MM patients

Phase III trials in NDMM not eligible for ASCT

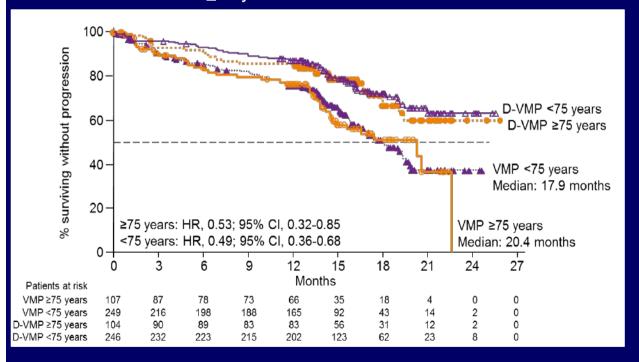
	VMP		Rd		°0:
	VMP vs MP: PFS: 24 vs 16m (▲8m) OS: 56 vs 43m. (▲13 m)		Rd vs Rd18 vs MPT PFS: 26 vs 21m. (▲5m) OS: 59 vs 49m (▲10 m)		ifm
	SWOG (N = 484 VRd vs Rd ¹	TOURMALINE (N = 705) IRd vs Rd ³	ENDURANCE (N = 1087) KRd vs VRd ²	ALCYONE (N = 706) DVMP vs VMP ⁴	MAIA (N = 737) DRd vs Rd ⁵
PFS (mos) (▲mos)	34 vs 24 ▲ 10	35 vs 22 ▲ 13.5	34 vs 34 =	36 vs 19 ▲ 17	60+ vs 34 ▲ 26+
OS	65 mos	NA	84%@3y	78% vs 68%@3y	66% vs 53%@ 5y

1. Durie B et al. Lancet 2017;389:519; 2. Kumar S et al. ASCO 2020; abstract LBA3;

3. Facon T et al. Blood 2021; 4. Mateos. Lancet 2019; 395:132-41 ASCT, autologous stem cell transplant; d, dexamethasone; D, daratumumab; K, carfilzomib; 5. Facon T. N Eng J Med 2019;380:2104 and Lancet Oncol 2021 in press.

M, melphalan; NA, not assessed; P, prednisone; R, lenalidomide; V, bortezomib

Courtesy by Facon T IMW 2021


Daratumumab in first line Impact of age on outcomes

ALCYONE study: D-VMP > VMP

Median age 71 years (range 40-93) ≥75 years 29.7%

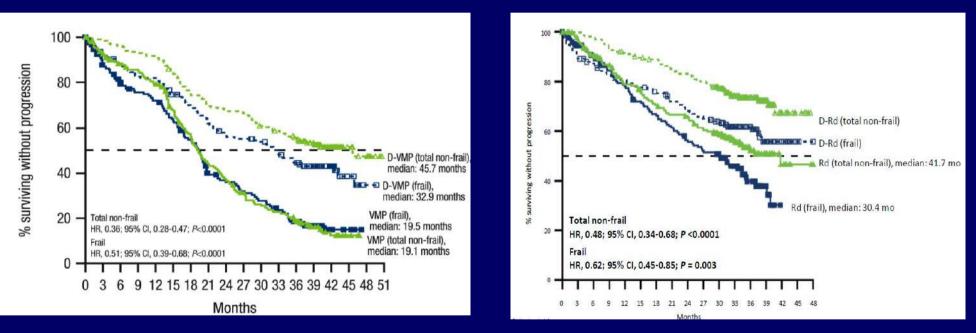
MAIA study: D-Rd > Rd

Median age 73 years (range 45-90) >75 years 43.5%

	F	td	D-	Rd		
	n/N	Median	n/N	Median	HR (95% CI)	
Sex						
Male	90/195	32.3	67/189	NE	H•-1	0.61 (0.44-0.83)
Female	81/174	34.4	53/179	NE		0.50 (0.35-0.70)
Age						
<75 years	91/208	35.4	58/208	NE	He-I	0.49 (0.35-0.69)
×75 years	80/161	31.9	62/160	NE	Fe -1	0.62 (0.44-0.87)
Race						
White	152/339	34.4	108/336	NE	Hert	0.56 (0.44-0.71)
Other	19/30	30.4	12/32	NE	1 • 1	0.54 (0.26-1.11)
Region						
North America	51/102	30.4	36/101	NE	He-I	0.53 (0.35-0.82)
Other	120/267	35.1	84/267	NE	H	0.56 (0.42-0.74)
Baseline renal function	(CrCl)					
>60 mL/min	98/227	37.1	62/206	NE	He-H	0.54 (0.40-0.75)
≤60 mL/min	73/142	29.7	58/162	NE	He-I	0.55 (0.39-0.77)
Baseline hepatic function	n					
Normal	158/340	33.7	105/335	NE	нен	0.52 (0.40-0.66)
Impaired	13/29	34.5	15/31	29.2	- -	→ 0.97 (0.46-2.05)
ISS staging						
1	29/103	NE	21/98	NE	I	0.61 (0.35-1.08)
Ш	82/156	29.7	55/163	NE	He-H	0.48 (0.34-0.67)
Ш	60/110	24.2	44/107	NE	H	0.61 (0.41-0.89)

In both studies, no impact of age was observed

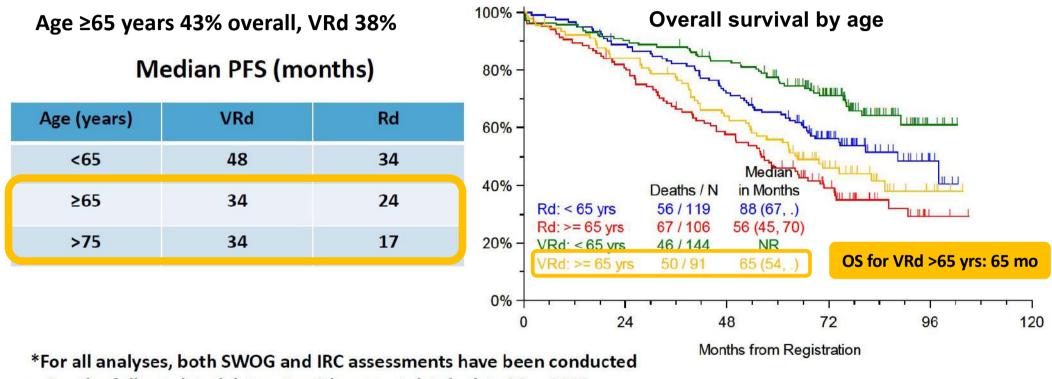
CI, confidence interval; D, daratumumab; HR, hazard ratio; PFS, progression-free survival; VMP, bortezomib-melphalan-prednisone.


Mateos MV et al. N Engl J Med 2018;378:518-28 Usmani SZ, et al., ASCO 2019; abstract 8035, oral presentation

Daratumumab in first line Impact of frailty on outcomes

PFS in the total non-frail and frail subgroups

ALCYONE


MAIA

Non-frail patients had longer PFS than frail patients, but the PFS benefit of the addition of Dara was maintained across frailty subgroups

Mateos MV, et al. Clin Lymphoma Myeloma Leuk. 2021, epub ahead of print; Zweegmann et al, EMN 2021. Facon T et al. Leukemia 2022

VRd-Rd vs continuous Rd: SWOG SO777 trial Impact of age on outcomes

using the fully updated datasets with current datalock in May 2018

VRd improved outcome compared with Rd, irrespective of age

Durie B et al. ASH 2018, abstract 1992, poster presentation; Durie B et al BCJ 2020 gression-free survival: QS, overall survival: p, p-value: vrs, vears, mo, months,

V, bortezomib; R, lenalidomide; d, dexamethasone; PFS, progression-free survival; OS, overall survival; p, p-value; yrs, years, mo, months.

Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up

Meletios A. Dimopoulos¹, Philippe Moreau², Evangelos Terpos¹, María-Victoria Mateos³, Sonja Zweegman⁴, Gordon Cook⁵, Michel Delforge⁶, Roman Hájek⁷, Fredrik Schjesvold^{8,9}, Michele Cavo¹⁰, Hartmut Goldschmidt¹¹, Thierry Facon¹², Hermann Einsele¹³, Mario Boccadoro¹⁴, Jesús San-Miguel¹⁵, Pieter Sonneveld¹⁶, Ulrich Mey¹⁷, on behalf of the EHA Guidelines Committee and the ESMO Guidelines Committee

Patient-frailty index and frailty index-defined risk factor assessment via IMWG-FI and Revised Myeloma Comorbidity Index

Patient risk factors

Age >75 years

Mild, moderately, or severely frail (patients who need help with either household tasks, personal care, or are completely dependent)

Comorbidities (pulmonary, renal, cardiac and hepatic dysfunction) And/or

Preferably with (a) IMWG-frailty index¹ and/or (b) R-MCI² define fit, intermediate-fit, and frail patients, in order to consider adapting antimyeloma therapy; fit level 0, intermediate fit level 1 and frail level 2.

http://www.myelomafrailtyscorecalculator.net http://www.myelomacomorbidityindex.org/

Dimopouolos MA et al. Annals of Oncology 2021

Treatment adjustment based on patient frailty/fitness EHA-ESMO Guidelines

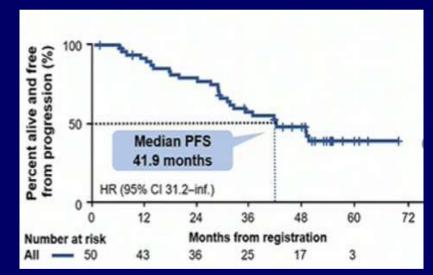
Frailty index risk f	actors						Devit 4.0.44 evens	David 0 45 00	David 0, 45, 00
Trainty mack now	uctors						Day 1, 4, 8, 11 every	Day 1, 8, 15, 22	Day 1, 8, 15, 22
							3 weeks	every 5 weeks	every 5 weeks
IMWG frailty index ¹	0	1	1 + occurrence of grade 3-4	≥2			20 mg/m ² day 1, 2,	00 1 2 1 1	
			haematological				8, 9, 15, 16 cycle	20 mg/m ² cycle 1	
			AE				1, 27 mg/m ² cycle	→ 27 mg/m ² cycle	20 mg/m ² day 1, 8,
R-MCI ²	1-3	4-6	7-9				2 every	2, day 1, 8, 15,	15, every 4
Dose level	0	1	-2	-2	-	Carfilzomiba	3 weeks	every 3 weeks	(5) weeks
Treatment doses	Level 0	Level 1	Level 2	-2				ven la veneta ven	2.3 mg day 1, 8, 15,
Treatment doses	Levero	Leven	Level 2				4 mg day 1, 8, 15,	3 mg day 1, 8, 15,	every
			0.3-0.5 mg/kg day	/S		Ixazomib	every 4 weeks	every 4 weeks	4 weeks
	2 mg/kg days 1-4 of	1 mg/kg days 1-4	1-4 of a 4-6-week				16 mg/kg bw, cycle		16 mg/kg bw,cycle
	a 4-6-week cycle	of a 4-6-week cycle	cycle				1-8: weekly;	16 mg/kg bw, cycle	1-8: weekly;
Prednisone	60 mg/m ² days 1-4 of a 6-week cycle	30 mg/m ² days 1-4 of a 6-week cycle	10-15 mg/m ² days 4 of a 6-week cyc				cycle 9-24: day	1-8: weekly; cycle	cycle 9-24: day
Tredhisone	of a o-week cycle	20 mg day 1, 8, 15,	4 of a 0-week cyc	10			1+15, from	9-24: day 1þ15,	1+15, from
	40 mg day 1, 8, 15,	22 of a 28-day	10 mg day 1, 8, 1	5.			week 25: every 4	from week 25:	week 25: every 4
Dexamethasone	22 of a 28-day cycle	cycle	22 of a 28-day cy	cle		Daratumumaba	weeks	every 4 weeks	weeks
	0.05	0.18 mg/kg days 1-						10 mg/kg bw, day	10 mg/kg bw, day
	0.25 mg/kg days 1-4 of a 4-6 week cycle	4 of a 4-6 week cvcle	0.13 mg/kg days of a 4-6-week cy				10 mg/kg bw, day 1,	1, 8, 15, 22, cycle	
	9 mg/ m ² days 1-4 of	7.5 mg/m ² days 1-4	5 mg/ m ² days 1-4				8, 15, 22, cycle		1, 8, 15, 22 cycle
Melphalan	a 6-week cycle	of a 6-week cycle	a 6-week cycle				1+2, from cycle 3:	1+2, from cycle 3:	1p2, from cycle 3:
40.54 1000-11 Hold		and we are and the	50 mg qod (- 50				day 1+15	day 1+15	day 1þ15
Thalidomide	100 (-200) mg/day	50 (-100) mg/day	mg/day)			Elotuzumab ^b		100 C 100	•
Lenalidomide	25 mg days 1-21 of a 28-day cycle	15 mg days 1-21 of a 28-day cycle	10 mg days 1-21 28-day cycle	ofa		New Yor's Safety Mar P Port for	20 ma day 1 2 E	15 mg day 1, 3, 5,	10 mg day 1, 3, 5, 8,
Lendidoffide	4 mg days 1-21 of a	3 mg days 1-21 of	2 mg days 1-21 o	fa			20 mg day 1, 3, 5,	8, 10, 12 every 4	10, 12 every
Pomalidomide	28-day cycle	a 28-day cycle	28-day cycle				8, 10, 12 every 4		
	1.3 mg/m ² twice	1.3 mg/m ² once	1.0 mg/m ² once			Description	weeks	weeks	5 weeks
Bortezomib	weekly	weekly	weekly			Panobinostat			

Expert-opinion dose modification guidelines are available to adapt treatment

Dimopouolos MA et al. Annals of Oncology 2021

Dose-adapted treatment Modified VRd (VRd-lite)

Induction (cycles 1-9) Repeat q35 days × 9 cycles


Lenalidomide 15 mg po days 1-21 Bortezomib 1.3 mg/m² sc* days 1, 8, 15, 22 Dexamethasone 20 mg po days 1, 2, 8, 9, 15, 16, 22, 23 (patients \leq 75 years) Dexamethasone 20 mg po days 1, 8, 15, 22 (patients >75 years old)

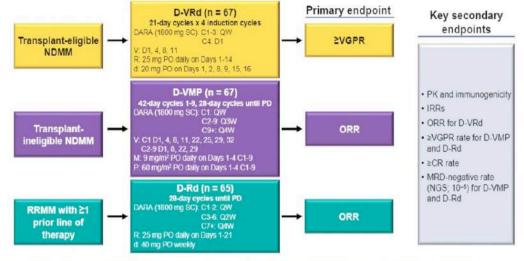
> Consolidation (cycles 10-15) Repeat q28 days × 6 cycles

Lenalidomide 15 po days 1-21 (or last tolerated dose as of cycle 9) Bortezomib 1.3 mg/m² sc days 1, 15 (or last tolerated dose as of cycle 9)

* The first 10 patients received bortezomib intravenously for cycle 1 only followed by subcutaneous administration. Subsequent patients received bortezomib subcutaneously.

Median age 73 yearsORR 86%, >VGPR 66%, >CR 44%Any grade PN 60%, Grade 3-4 PN 2%Grade 3-4 AEs: Fatigue 16%, Rash 10%,
Neutropenia 14%

VRd-lite is well-tolerated and highly effective in TNE patients with robust PFS and OS.


MM, multiple myeloma; V, bortezomib; R, lenalidomide; d, dexamethasone; No., N, number.

O'Donnell et al, BJH 2018, 182(2):222-230; O'Donnell et al, ASH 2019

Convenient treatment: Daratumumab sc

PLEIADES (MMY2040) Study Design

Phase 2 study of DARA SC in combination with standard treatment regimens (N = 199)

C. cycle: QW, once weekty: D. day; PO, oral; PD, progressive disease: QSW, once every 3 weeks; Q4W, once every 4 weeks; VGPR, very good partial response; ORR, overall response rate; PK, pharmacokinetos; IRR, infusion-related reaction; CR, complete response; MRD, minimal residual disease; N3S, next garreration sequencing;

	D-VRd (n = 67)	D-VMP (n = 67)	D-Rd (n = 65)
	Transplant-eligible NDMM	Transplant-ineligible NDMM	RRMM with ≥1 prior line of therapy
Any TEAE, n (%)	67 (100.0)	67 (100.0)	65 (100.0)
Serious TEAE, n (%)	19 (28.4)	26 (38.8)	31 (47.7)
Grade 3/4 TEAE, n (%)	38 (56.7)	46 (68.7)	54 (83.1)
TEAEs leading to treatment discontinuation, n (%)	1 (1.5)	2 (3.0)	5 (7.7)
Fatal TEAE, n (%)	1 (1.5)	2 (3.0)	2 (3.1)

Dara sc combination therapy safety profiles were consistent with Dara iv with lower rate of IRRs

Chari et al., ASH 2019; abstract 3152

New standards including daratumumab in first line Safety

ALCYONE study: D-VMP vs VMP

MAIA study: D-Rd vs Rd

Adverse Events	D-VMP	VMP	Adverse Events		-Rd 364)		Rd : 365)
	(n = 346)	(n = 354)		Any grade ^ь	Grade 3 or 4°	Any grade ^b	Grade 3 or 4°
Hematologic, n (%)			Hematologic, n (%)				
Neutropenia	139 (40.2)	138 (39.0)	Neutropenia	214 (59)	186 (51)	156 (43)	129 (35)
Thrombocytopenia	120 (34.7)	134 (37.9)	Anemia Leukopenia	134 (37) 70 (19)	49 (14) 40 (11)	143 (39) 37 (10)	75 (21) 21 (6)
Anemia	60 (17.3)	70 (19.8)	Lymphopenia	68 (19)	56 (15)	46 (13)	39 (11)
	, ,		Nonhematologic, n (%)				
Leukopenia	28 (8.1)	30 (8.5)	Diarrhea	221 (61)	25 (7)	174 (48)	19 (5)
Lymphopenia	27 (7.8)	22 (6.2)	Constipation	151 (42)	6 (2)	133 (36)	1 (<1)
Nonhematologic, n (%)		1 1	Fatigue	152 (42)	31 (9)	105 (29)	15 (4)
			Peripheral edema	142 (39)	7 (2)	109 (30)	2 (<1)
Pneumonia	45 (13.0)	15 (4.2)	Back pain	134 (37)	11 (3)	99 (27)	13 (4)
Hypertension	19 (5.5)	6 (1.7)	Asthenia	121 (33)	18 (5)	95 (26)	15 (4)
пурецензии		0(1.7)	Bronchitis	119 (33)	11 (3)	82 (23)	5 (1)
Fatigue	12 (3.5)	9 (2.5)	Nausea	121 (33)	5 (1)	85 (23)	2 (<1)
Hyperglycemia	11 (3.2)	8 (2.3)	Insomnia	113 (31)	10 (3)	112 (31)	12 (3)
			Pneumonia	88 (24)	53 (15)	51 (14)	33 (9)
Diarrhea	9 (2.6)	11 (3.1)	Hypokalemia	80 (22)	37 (10)	65 (18)	35 (10)
Discontinuations due to AEs 6.9	9% vs 9.3%		Discontinuations	due to AE	s 9% vs 18%	%	

The most common grade 3-4 AEs were neutropenia and pneumonia

Mateos MV et al ASH 2019; Bahlis N et al, ASH 2019

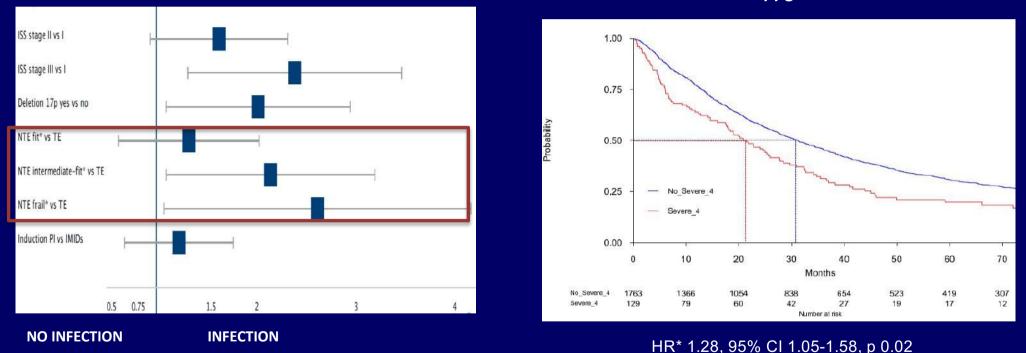
Ixazomib-Daratumumab-low dose dexamethasone Phase II HOVON 143 trial

Induction

9 cycles of 4 weeks					
Ixazomib 4 mg day 1, 8, 15					
Daratumumab 16 mg/kg					
cycle 1-2 day 1, 8, 15, 22					
cycle 3-6 day 1, 15					
cycle 7-9 day 1					
Dexamethasone					
cycle 1-2 20 mg day 1, 8, 15, 22					
cycle 3-6 10 mg day 1, 15					
cycle 7-9 10 mg day 1					
Maintenance					
8-week cycles (until progression for					

a maximum of 2 years)					
Ixazomib 4 mg	day 1, 8, 15, 29,				
36, 43					
Daratumumab 16 mg/kg	day 1				
Dexamethasone 10 mg	day 1				

Median Age 76 years for unfit, 82 years for frail

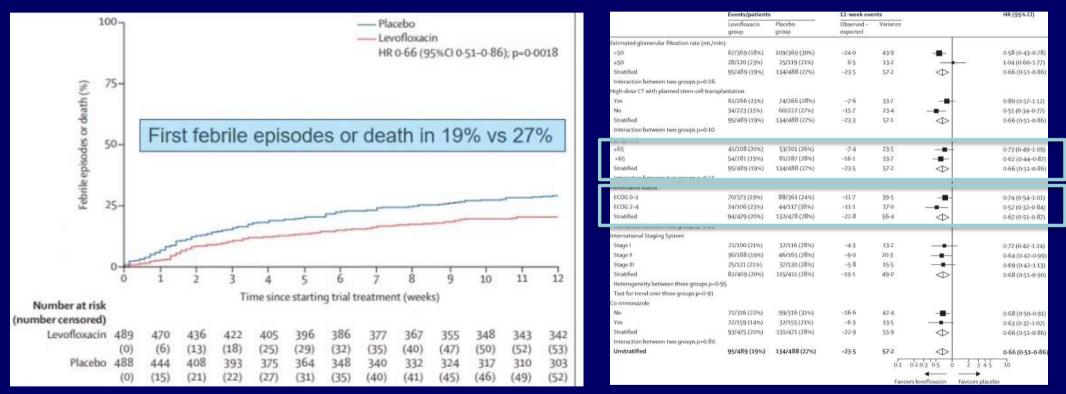

	Unfit	Frail
ORR	74%	78%
PFS	23 months	12 months
Discontinuation	2%	7%
Early death	2%	9%
Grade 3-4 infections	9%	13%

Effective and feasible treatment, however better identification and support of frail patients needed

Antibiotic and -viral prophylaxis: Cotrimoxazole 480 mg/day, Valaciclovir 500 mg tid Vaccinations

Managing toxicity in frail patients: infections

The risk of early severe infections is higher in intermediate fit/frail patients and negatively affects outcome

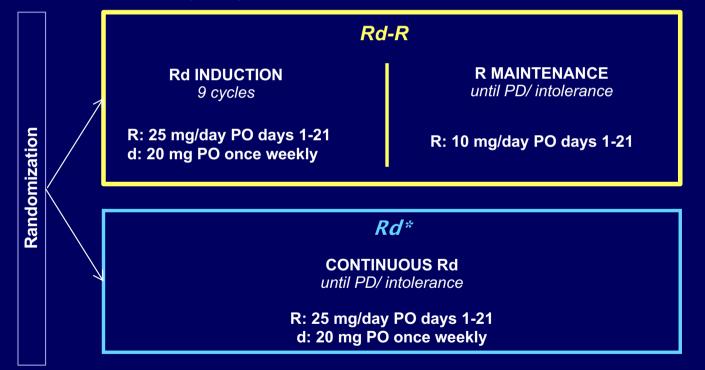


PFS

Bonello F et al, ASH 2020

Preventing toxicity Antibiotic prophylaxis in newly diagnosed MM TEAMM phase 3 trial

N= 977 NDMM. Oral levofloxacin 500 mg vs placebo for 12 weeks. Start within 2 weeks.



Prophylactic levofloxacin could be used for patients with newly diagnosed myeloma.

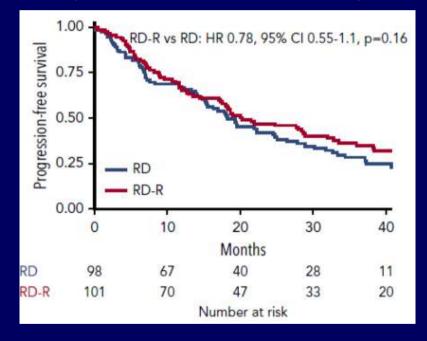
Drayson et al. Lancet Oncol 2019; 20:1760.

Dose/Schedule-Adjusted Rd-R vs continuous Rd in unfit patients RV-MM-PI-0752 Phase III Randomized Study

199 intermediate-fit (unfit) patients have been enrolled and could be evaluated

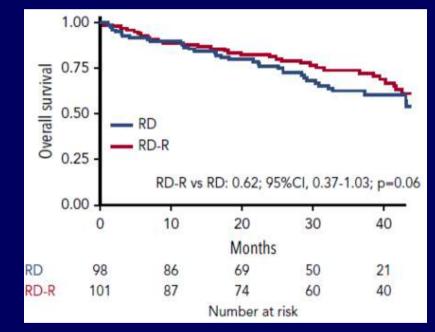
*The dose and schedule of continuous Rd was the one adopted in patients >75 years in the FIRST trial (Hulin C et al. JCO 2016)

R, lenalidomide; d, dexamethasone; PO, orally; PD, progressive disease


Larocca A, et al. ASH 2018, abstract 305

Dose/Schedule-Adjusted Rd-R vs Rd in unfit patients

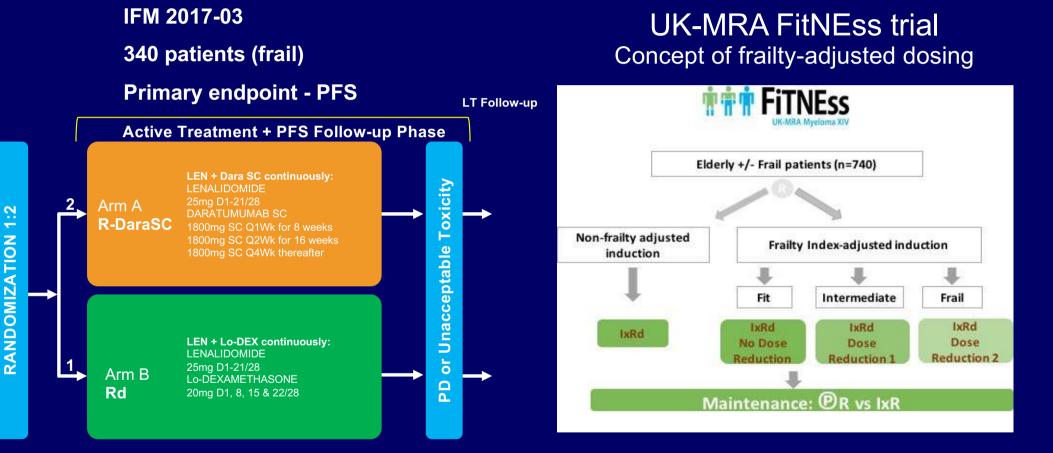
Median follow-up 37 months


Progression-free survival

Median PFS 20.2 with Rd-R vs 18.3 months with Rd (HR, 0.78; 95% CI, 0.55-1.1; P 0.16).

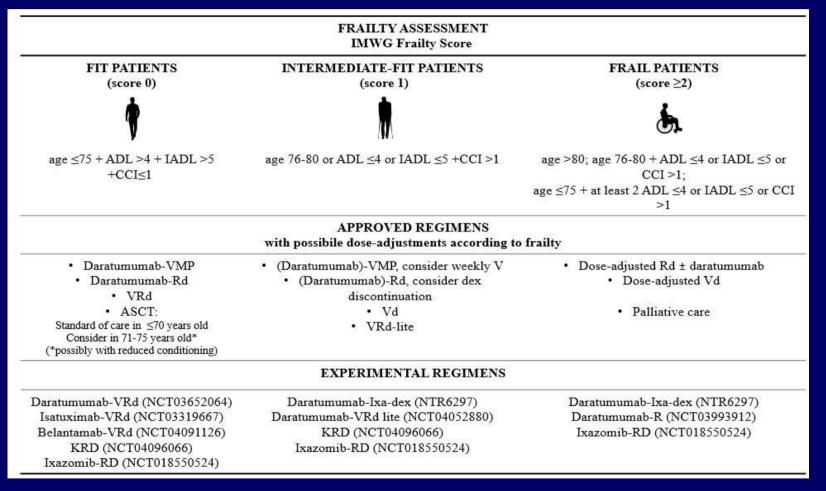
Median OS not reached; 3-year OS rate 74% with Rd-R vs 63% with continuous Rd (HR, 0.62; 95% CI, 0.37-1.03; P 0.06).

Overall survival



Reduced dose intensity Rd-R and sparing steroid do not affect outcome in unfit patients

R, Lenalidomide; d, dexamethasone; PFS, progression-free survival, OS, overall survival.


Larocca A, et al. VOLUME 137, NUMBER 22 3027-3036.

Frailty-adjusted treatments

Randomization will be stratified by International Staging System (I vs II vs III) and age (<80 vs ≥80) In Arm A Low Dose Dex (20mg/week) during Cycle 1 and 2 then Methylprednisolone (with SC Dara) www.clincaltrials.gov identifier: NCT03993912 Fitness trial - NCT03720041

Conclusions Frailty tailored treatment

Bonello F et al. Pharmaceuticals 2020

Acknowledgments

Myeloma Unit, Division of Hematology

University of Torino

Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Torino, Italy

Prof. Mario Boccadoro

ProF Dario Ferrero

Dr. Sara Bringhen Dr. Francesca Gay Dr. Stefania Oliva Dr. Roberto Mina Dr. Mattia D'Agostino

Dr. Francesca Bonello Dr. Luca Bertamini Dr. Giuseppe Bertuglia Dr. Lorenzo Cani Laboratory Staff Transplant Unit Nurses Data Managing Staff Statisticians

